


## Станции очистки сточных вод БИОФЛУИД E10-80

TY BY 300602750.008 - 2005

avrora-arm.ru +7 (495) 956-62-18

#### 1 ПРИМЕНЕНИЕ

Станция очистки сточных вод БИОФЛУИД (BIOFLUID) моделей БИОФЛУИД Е-H, E-ДH, E-ДHК (BIOFLUID E-N, E-DN, E-DNK) (в дальнейшем BIOFLUID) служит для очистки хозяйственно-фекальных сточных вод из жилых домов или бытовых помещений предприятий, объектов культурно-бытового назначения, в случаях, когда предъявляются высокие требования к качеству стока из СОСВ, в том числе к содержанию азота и фосфора.

COCB BIOFLUID служит для очистки сточных вод небольших объектов там, где отсутствует возможность подключения к сетям канализации с очистными сооружениями или там, где необходимо построить станцию очистки для временной эксплуатации.

### 2 ТЕХНИЧЕСКИЕ ДАННЫЕ

### 2.1 Основные параметры

Таблица 1

| BIOFLUID                                   | E10  | E20  | E30  | E40 | E50   | E60  | E80  |  |  |
|--------------------------------------------|------|------|------|-----|-------|------|------|--|--|
| Число проживающих жителей                  | 10   | 20   | 30   | 40  | 50    | 60   | 80   |  |  |
| Расходы сточных вод                        |      |      |      |     |       |      |      |  |  |
| Q <sub>ср сут</sub> (м <sup>3</sup> /сут)  | 1,5  | 3    | 4,5  | 6   | 7,5   | 9    | 12   |  |  |
| Q <sub>max cyt</sub> (M <sup>3</sup> /cyt) | 2,25 | 4,5  | 6,75 | 9   | 11,25 | 13,5 | 18   |  |  |
| q <sub>max</sub> (м <sup>3</sup> /ч)       | 0,8  | 1,42 | 2,02 | 2,6 | 3,14  | 3,71 | 4,65 |  |  |

### 2.2 Допустимые концентрации загрязняющих веществ на входе

Таблица 2

| наименование       | ед. измерения | количество на входе |
|--------------------|---------------|---------------------|
| БПК5               | мг/л          | 150 - 400           |
| BB                 | мг/л          | до 370              |
| N-общий            | мг/л          | 25÷70               |
| N-NH4 <sup>+</sup> | мг/л          | 15÷45               |
| Р <sub>общ.</sub>  | мг/л          | 7÷10                |

### 2.3 Гарантируемое качество очистки сточных вод на выходе

Таблица 3

| наименование       | ед. измерения | количество на выходе                           |
|--------------------|---------------|------------------------------------------------|
| БПК₅               | мг/л          | до 17                                          |
| BB                 | мг/л          | до 20                                          |
| N-NH4 <sup>+</sup> | мг/л          | до 10 (при температуре<br>сточных вод ≥ 12 °C) |
| Р <sub>общ.</sub>  | мг/л          | до 3 (до 1,5 для BF-DNK)                       |

### 2.4 Типовой ряд

Биологическая станция очистки сточных вод с ротационными биодисками производится в трех вариантах. Каждый вариант имеет семь типоразмеров (в дальнейшем только тип):

- BIOFLUID N (BF-N) станция очистки с биоконтактором, обладающим повышенной окислительной мощностью. СОСВ устроена как нитрификационная.
- BIOFLUID DN (BF-DN) такая же как BF-N станция очистки, дополненная погруженным аноксидным биофильтром. СОСВ устроена как нитрификационно-денитрификационная.
- BIOFLUID DNK (BF-DNK) станция очистки BF-DN, дополненная коагуляционно-флокуляционной единицей с дозированием соли железа. СОСВ устроена как нитрификационно-денитрификационная с химическим осаждением взвешенных веществ и фосфора. Эту станцию можно использовать для очистки производственных сточных вод, ращепляемых биологическим путем.

### 2.5 Технические параметры

Таблица 4 BIOFLUID - N

| Наиманавания          | Ед.  | BIOFLUID - N |      |      |           |      |      |              |  |
|-----------------------|------|--------------|------|------|-----------|------|------|--------------|--|
| Наименование          | изм. | E10          | E20  | E30  | E40       | E50  | E60  | E80          |  |
| длина корпуса L       | MM   | 2130         | 2130 | 2000 | 2400      | 3200 | 4000 | 4000         |  |
| ширина корпуса В      | MM   | 1030         | 1630 | 2400 | 2400      | 2400 | 2400 | 2400         |  |
| высота корпуса Н      | MM   | 2430         | 2/30 | 2480 | 2480      | 2480 | 2480 | 2480         |  |
|                       |      | 2430         | 2430 | 2400 | 2480 2480 | 2400 | 2400 | (2900 -      |  |
|                       |      |              |      |      |           |      |      | высота до    |  |
|                       |      |              |      |      |           |      |      | верха        |  |
|                       |      |              |      |      |           |      |      | биореактора) |  |
| мощность двигателя    | Вт   | 120          | 120  | 180  | 180       | 180  | 250  | 250          |  |
| масса СОСВ            | КГ   | 410          | 555  | 1030 | 1260      | 1480 | 1780 | 1840         |  |
| максимальный шум (без |      |              |      |      |           |      |      |              |  |
| крышки, в 1 м от      | дБ   | 65           | 65   | 65   | 65        | 65   | 65   | 65           |  |
| корпуса)              |      |              |      |      |           |      |      |              |  |
| напряжение            | В    | 400          | 400  | 400  | 400       | 400  | 400  | 400          |  |

Таблица 5 BIOFLUID – DN, DNK

| Hamana                                          | Ед.  |      | BIOFLUID – DN, DNK |      |      |      |      |                 |  |
|-------------------------------------------------|------|------|--------------------|------|------|------|------|-----------------|--|
| Наименование                                    | изм. | E10  | E20                | E30  | E40  | E50  | E60  | E80             |  |
| длина корпуса L                                 | MM   | 2130 | 2130               | 2000 | 2400 | 3200 | 4000 | 4000            |  |
| ширина корпуса В                                | MM   | 1030 | 1630               | 2400 | 2400 | 2400 | 2400 | 2400            |  |
| высота корпуса Н                                | ММ   | 2430 | 2430               | 2480 | 2480 | 2480 | 2480 | 2480<br>(2900 - |  |
|                                                 |      |      |                    |      |      |      |      | высота до       |  |
|                                                 |      |      |                    |      |      |      |      | верха           |  |
|                                                 |      |      |                    |      |      |      |      | биореактора)    |  |
| примерный расход 40 % сульфата железа (для DNK) |      | 0,1  | 0,2                | 0,4  | 0,6  | 0,8  | 1,0  | 1,2             |  |
| мощность двигателя                              | Вт   | 120  | 250                | 180  | 180  | 180  | 250  | 250             |  |
| масса СОСВ                                      | КГ   | 460  | 620                | 1120 | 1320 | 1600 | 1830 | 2010            |  |
| максимальный шум (без крышки, в 1 м от корпуса) | дБ   | 65   | 65                 | 65   | 65   | 65   | 65   | 65              |  |
| напряжение                                      | В    | 400  | 400                | 400  | 400  | 400  | 400  | 400             |  |

Потребление электроэнергии при эксплуатационной нагрузке может колебаться в пределах  $\pm$  15 %.

<u>Примечание:</u> СОСВ БИОФЛУИД предлагается в двух вариантах исполнения: 1-й вариант — основное исполнение с надставкой, 2-й вариант — основное исполнение в железобетоне. Высота надставки зависит от глубины заложения подводящего коллектора. Вариант исполнения с надставкой уточняется у поставщика оборудования.

#### 2.6 Предельные значения

- кратковременная двукратная гидравлическая перегрузка в исключительных случаях допускается поступление на станцию очистки удвоенного среднесуточного расхода сточных вод без ухудшения выходных параметров
- кратковременная двукратная перегрузка по БПК в исключительных случаях допускается поступление на станцию очистки сточных вод с двухсуточным количеством загрязняющих веществ по БПК₅ без ухудшения выходных параметров
- десятикратный гидравлический удар в течение 30 минут на станцию очистки может поступать десятикратный средний расход сточных вод без ухудшения выходных параметров
- шестидесятисуточный перерыв в поступлении сточных вод на 60 суток можно прекратить приток воды (станция очистки находится в эксплуатации, то есть, биодиски вращаются), затем можно возобоновить полную загрузку станции очистки без ухудшения выходных параметров стока.

### 2.7 Эксплуатация в зимнее время

В зимнее время необходимо обеспечить минимальную температуру сточных вод  $+ 8^{\circ}\text{C} \div 10^{\circ}\text{ C}$ .

### 2.8 Материал

Корпус СОСВ и пластиковые части изготовлены из полипропилена. Рама биоконтактора и несущие части изготовлены из стали.

#### 3 ОПИСАНИЕ СООРУЖЕНИЯ

СОСВ BIOFLUID представляет собой компактное сооружение. Его основу составляет водонепроницаемый пластиковый резервуар с встроенной технологической оснасткой. Перегородки разделяют корпус СОСВ на секцию первичного отстаивания (в вариантах DN, DNK с аноксидным биофильтром), секцию вторичного отстаивания с регулируемым сточным желобом с зубчатой водосливной кромкой и пространство билогического реактора, в верхней части которого встроен биоконтактор с электроприводом.

- Корпус полипропиленовый резервуар с встроенным технологическим оборудованием.
- Биоконтактор с рамой состоит из полипропиленовых биодисков, размещенных на стальном валу.
- Сточный желоб изготовлен из ПВХ трубы Ø 160 мм. Одна его часть соединена с выпускным патрубком. На свободном конце сточного желоба находится регулировочный винт для регулировки горизонтального положения.
  - Подводящий и отводящий отверстия Ø 160 мм.
- Площадка для обслуживания состоит из пластиковых решеток. Этими решетками оборудованы СОСВ BIOFLUID E 30 E80.
- Щиты перекрытия состоят из полипропиленовых плит. Возможно утепленное исполнение. Перекрытия не предназначены для хождения.
- Вентиляция (естественная) состоит из патрубков притока и вытяжки. В варианте исполнения СОСВ BIOFLUID в железобетоне предусматривается проектом, а в варианте СОСВ BIOFLUID с надставкой входит в комплект поставки. Независимо от варианта исполнения в комплект поставки входит шланг, соединяющий патрубок притока с электродвигателем.
- Поплавковый клапан предназначен для обеспечения рециркуляции и удаления избыточного ила из секции вторичного отстаивания станции очистки.
- Надставка СОСВ (не входит в основной комплект поставки) служит для надстройки СОСВ до уровня земли.
- Пульт управления на стойке (уличное исполнение) предназначен для управления СОСВ. Устанавливается рядом со станцией. Проектом необходимо предусмотреть прокладку силового кабеля к пульту управления и основание под стойку.
- Дозирование коагулянта (для модификации BIOFLUID DNK) представлено емкостью объемом 60 л с насосом-дозатором.

## 4 ПРИНЦИП ДЕЙСТВИЯ

Загрязненная вода поступает в пространство первичного отстойника, где происходит частичное отделение крупных загрязнений, аккумуляция сточной воды и уплотнение первичного и избыточного активного ила. Из первичного отстойника сточная вода ковшовым дозатором подается в активационную часть станции с ротационным биодисковым реактором. В реакторе происходит очистка сточной воды с помощью микроорганизмов, нарастающих на биодисках, а также развивающихся в активном иле, который благодаря вращению биодисков поддерживается в псевдосжиженном, взвешенном состоянии.

У станций очистки типа БИОФЛУИД - DN и БИОФЛУИД - DNК перед активационной секцией помещена погруженная аноксидная биоколонна, в которой происходит устранение азота и части органических загрязнений.

Из биологического реактора смесь воды и активного ила поступает в нижнюю часть вторичного отстойника, откуда поднимается через слой активного ила и далее через пространство вторичного отстойника к гребню водослива сточного желоба. Активный ил оседает в нижней части вторичного отстойника, откуда затем уносится течением в каналах реактора обратно в активационную часть станции очистки. С помощью поплавкового клапана избыточный активный ил и часть сточной воды возвращаются в пространство первичного отстойника. Таким образом, обеспечивается с одной стороны рециркуляция, с другой стороны удаление избыточного ила из секции вторичного отстаивания станции очистки.

В модификации BIOFLUID DNК в рециркуляционный поток дозируется железосодержащий коагулянт для удаления фосфора.

# 5 ИНСТРУКЦИЯ ПО МОНТАЖУ СТАНЦИЙ ОЧИСТКИ СТОЧНЫХ ВОД БИОФЛУИД E

## 5.1 Монтаж станции очистки с надставкой (для моделей BIOFLUID E10 - F40)

- 5.1.1 До начала монтажных работ обеспечить понижение уровня грунтовых вод (при их наличии) ниже плиты фундамента под станцию.
- 5.1.2 Проверить общее состояние корпуса станции очистки и надставки, обращая внимание на целостность корпусов, а также на отсутствие повреждений монтажных петель.
- 5.1.3 Убедиться в отсутствии посторонних предметов, строительного мусора и воды внутри емкости станции очистки. Посторонние предметы необходимо убрать, воду откачать.
- 5.1.4 Установить корпус станции очистки на фундаментную плиту, производя тщательную очистку основания от строительного мусора, ориентируя корпус относительно подводящего и отводящего коллекторов. Допустимое отклонение верха плиты от горизонтальной плоскости ± 5 мм на 1 м длины.

Для перемещения корпуса необходимо использовать четырехветвевой строп с креплением во всех четырех монтажных петлях.

Во время перемещения станции очистки избегать ударов во избежание повреждения корпуса.

- 5.1.5 Нанести силикон на место соединения корпуса станции очистки и надставки по периметру и произвести установку надставки на корпус станции очистки.
- 5.1.6 Произвести крепление надставки к корпусу станции очистки посредством болтовых соединений.
- 5.1.7 Установить трубы подводящего и отводящего коллекторов в соответствующие отверстия в корпусе емкости (маркированные «вход», «выход») с использованием смазки, соблюдая соосность.
- 5.1.8 Установить опалубку по периметру наружных стен изделия. Стены корпуса станции очистки служат внутренней опалубкой.
- 5.1.9 Заполнить корпус станции очистки чистой водой на высоту 0,5 м, заполняя одновременно все отсеки.
- 5.1.10 Корпус станции очистки накрыть пленкой и сплошным дощатым настилом во избежание механических повреждений и загрязнения.
- 5.1.11 Произвести бетонирование стен по периметру с послойным уплотнением. Высота бетонирования определяется строительным проектом в зависимости от гидрогеологических условий.

При укладке бетона следует избегать ударов тяжелыми предметами по стенке станции очистки. При уплотнении бетона вибратором прикосновение к стенкам корпуса и ребрам жесткости не допускается.

5.1.12 По окончании бетонирования произвести засыпание грунтом по периметру с послойным уплотнением.

При бетонировании либо засыпке грунтом разницу между уровнем воды в оборудовании и уровнем слоя бетона либо грунта следует поддерживать в допуске ±30 см (этот режим соблюдать до достижения уровня отводящего трубопровода).

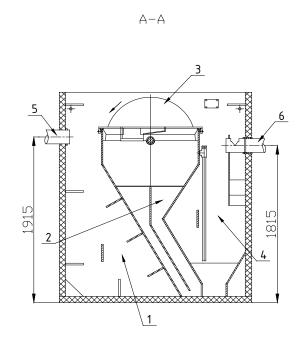
- 5.1.13 Произвести дальнейшее засыпание грунтом по периметру оборудования без напуска воды.
  - 5.1.14 Убрать защитный дощатый настил и пленку.
  - 5.1.15 Произвести установку крышки на корпус станции очистки.
- 5.1.16 Очистить водосборную площадку от строительного мусора, отмыть ее от наносов песка и глины.

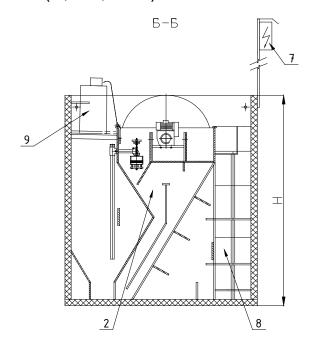
## 5.2 Монтаж станции очистки в основном исполнении в бетоне (для всех моделей BIOFLUID E)

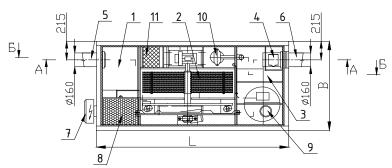
- 5.2.1 До начала монтажных работ обеспечить понижение уровня грунтовых вод (при их наличии) ниже плиты фундамента под станцию.
- 5.2.2 Проверить соответствие выполнения плиты фундамента и внешней опалубки для бетонирования стен станции проектной документации.
- 5.2.3 Проверить общее состояние корпуса станции очистки, обращая внимание на целостность корпуса, а также на отсутствие повреждений монтажных петель.
- 5.2.4 Убедиться в отсутствии посторонних предметов, строительного мусора и воды внутри емкости станции очистки. Посторонние предметы необходимо убрать, воду откачать.
- 5.2.5 Установить корпус станции очистки на фундаментную плиту, производя тщательную очистку основания от строительного мусора, ориентируя корпус относительно подводящего и отводящего коллекторов. Допустимое отклонение верха плиты от горизонтальной плоскости ± 5 мм на 1 м длины.

Для перемещения корпуса необходимо использовать четырехветвевой строп с креплением во всех четырех монтажных петлях.

Во время перемещения станции очистки избегать ударов во избежание повреждения корпуса.

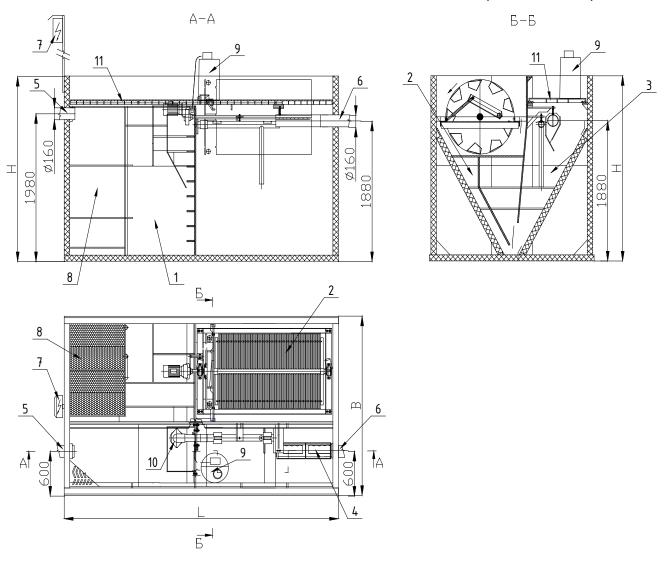

- 5.2.6 Установить трубы подводящего и отводящего коллекторов в соответствующие отверстия в корпусе емкости (маркированные «вход», «выход») с использованием смазки, соблюдая соосность.
  - 5.2.7 Зачеканить сальники.
- 5.2.8 Установить опалубку по периметру наружных стен изделия. Стены корпуса станции очистки служат внутренней опалубкой.
- 5.2.9 Напустить одновременно во все пространства станции ≈ 0,5 м чистой воды и начать постепенное бетонирование по периметру с послойным уплотнением. Разницу между уровнем воды в станции (во всех пространствах) и уровнем слоя бетона следует поддерживать в допуске ±30 см. Этот режим работы соблюдать до достижения уровня отводящего патрубка, дальнейшее бетонирование производить без напуска воды.


Перед началом бетонных работ корпус станции очистки накрыть пленкой и сплошным дощатым настилом во избежание механических повреждений и загрязнения.


При укладке бетона следует избегать ударов тяжелыми предметами по стенке станции очистки. При уплотнении бетона вибратором прикосновение к стенкам корпуса и ребрам жесткости не допускается.

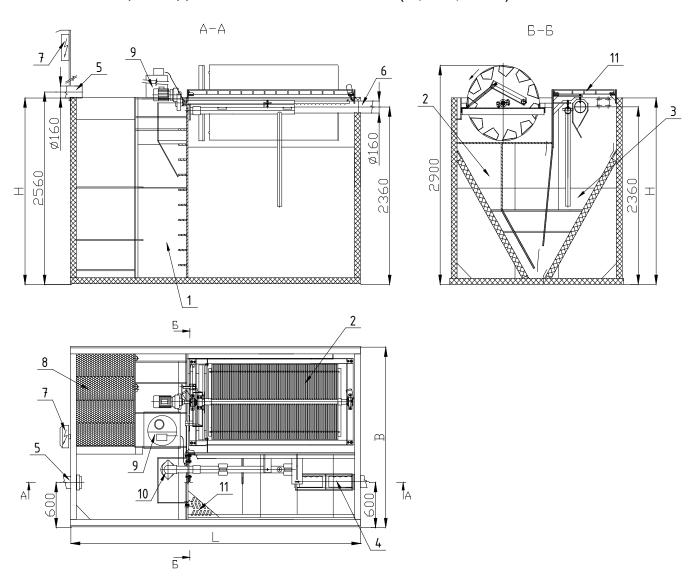
- 5.2.10 Бетонирование стенок станции выше полипропиленового корпуса следует производить с использованием инвентарной внутренней опалубки, которая устанавливается на полипропиленовые стенки корпуса станции.
- 5.2.11 После окончания бетонных работ убрать защитный дощатый настил и пленку.
  - 5.2.12 Произвести установку щитов перекрытия на бетонные стенки.
- 5.2.13 Очистить водосборную площадку от строительного мусора, отмыть ее от наносов песка и глины.

### Общий вид COCB BIOFLUID – E10, E20 (N, DN, DNK)





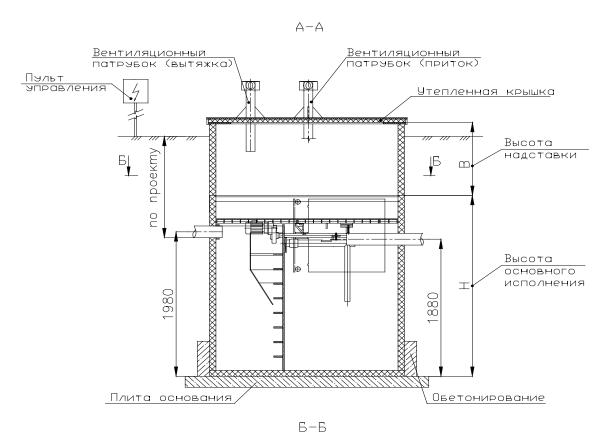


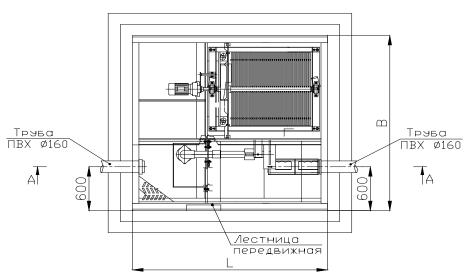


- 1 зона первичного отстаивания
- 2 биологический реактор с биоконтактором
- 3 зона вторичного отстаивания
- 4 сточный желоб
- 5 подводящий трубопровод
- 6 отводящий трубопровод
- 7 пульт управления
- 8 аноксидная зона (для версии DN, DNK)
- 9 дозирующее устройство (для версии DNK)
- 10 поплавковый клапан
- 11 площадка для обслуживания
- L длина корпуса (см. табл. № 4-5)
- В ширина корпуса (см. табл. № 4-5)
- Н высота корпуса (см. табл. № 4-5)

## Общий вид COCB BIOFLUID – E30, E40, E50, E60 (N, DN, DNK)



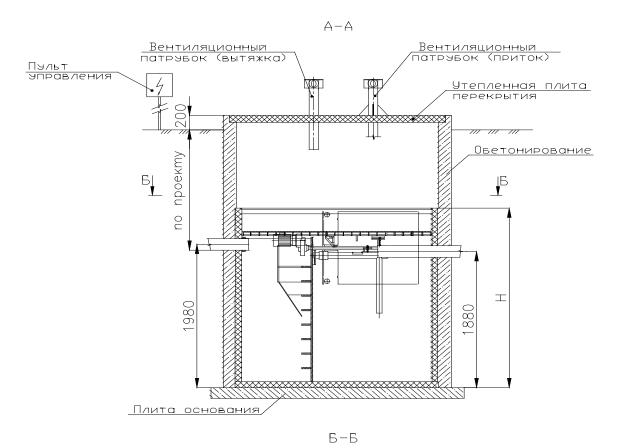
- 1 зона первичного отстаивания
- 2 биологический реактор с биоконтактором
- 3 зона вторичного отстаивания
- 4 сточный желоб
- 5 подводящий трубопровод
- 6 отводящий трубопровод
- 7 пульт управления
- 8 аноксидная зона (для версии DN, DNK)
- 9 дозирующее устройство (для версии DNK)
- 10 поплавковый клапан
- 11 площадка для обслуживания
- L длина корпуса (см. табл. № 4-5)
- В ширина корпуса (см. табл. № 4-5)
- Н высота корпуса (см. табл. № 4-5)

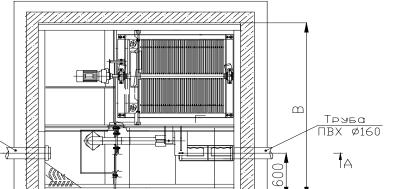

### Общий вид COCB BIOFLUID – E80 (N, DN, DNK)




- 1 зона первичного отстаивания
- 2 биологический реактор с биоконтактором
- 3 зона вторичного отстаивания
- 4 сточный желоб
- 5 подводящий трубопровод
- 6 отводящий трубопровод
- 7 пульт управления
- 8 аноксидная зона (для версии DN, DNK)
- 9 дозирующее устройство (для версии DNK)
- 10 поплавковый клапан
- 11 площадка для обслуживания
- L длина корпуса (см. табл. № 4-5)
- В ширина корпуса (см. табл. № 4-5)
- Н высота корпуса (см. табл. № 4-5)

### ПРИМЕРНОЕ РЕШЕНИЕ СТРОИТЕЛЬНОЙ ЧАСТИ


# Станция очистки сточных вод BIOFLUID E10-40 (N, DN, DNK) в основном исполнении с надставкой






### ПРИМЕРНОЕ РЕШЕНИЕ СТРОИТЕЛЬНОЙ ЧАСТИ

## Станция очистки сточных вод BIOFLUID E10-80 (N, DN, DNK) в основном исполнении в железобетоне





Скобы

avrora-arm.ru +7 (495) 956-62-18

<u>Труба</u> ПВХ Ø160